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ABSTRACT

Objectives: Translingual neurostimulation (TLNS) with adjunct physical rehabilitation is used to treat balance and gait deficits
in several chronic neurological conditions. The purpose of this review is to summarize and appraise the evidence currently
available on the portable TLNS device and to assess its potential clinical application.

Materials and Methods: In this narrative review, MEDLINE, EMBASE, Web of Science, and Google Scholar were searched for
primary research investigating the use of portable TLNS devices on any neurologic condition. Data were extracted, reviewed,
and appraised with respect to study design, conduct, and reporting.

Results: Five randomized controlled trials (RCTs), three quasi-experimental trials, and seven case reports/series were found.
Most studies demonstrated improvements in balance and gait deficits secondary to traumatic brain injury and multiple sclero-
sis, but evidence is also present to a lesser degree for stroke and balance disorder patients. In these studies, the feasibility and
safety of TLNS have been convincingly demonstrated. Functional magnetic resonance studies have also suggested a plausible
neuroplastic therapeutic mechanism. However, the efficacy of TLNS remains unclear due to bias and confounding within stud-
ies, and heterogeneity of results between studies.

Conclusions: TLNS is a promising treatment modality for various chronic neurological conditions that are often refractory to
conventional therapy. However, TLNS technology remains largely investigational as high-quality RCTs are still required to eluci-
date efficacy, optimal dosages, necessary treatment durations, and treatment durability. Further research to develop an appro-
priate control group is needed for scientifically valid comparisons of TLNS.
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Dr. Kurt Kaczmarek, and Dr. Paul Bach-y-Rita) at the University of
Wisconsin-Madison partnered with Helius Medical to develop the
Portable Neuromodulation Stimulator (PoNS) (Helius Medical

INTRODUCTION

Neuromodulation has been a therapeutic modality for neurologi-

cal conditions since the 1950s, often for conditions refractory to
conventional therapies (1). Nerve activity is altered through electri-
cal or chemical stimulation targeted to specific neurologic regions.
Regions stimulated and their downstream effects vary between
neuromodulation modalities. For instance, deep brain stimulation
(DBS) was the first US. Food and Drug Administration-approved
neuromodulation modality and involved surgical implantation of
electrodes that stimulate deep structures in the brain to treat
Parkinson’s disease, essential tremor, dystonia, among other neuro-
psychiatric disorders (2). Other neuromodulation techniques,
including transcranial direct current stimulation and repetitive
transcranial magnetic stimulation (rTMS), have since been devel-
oped (1). Although each technique has unique benefits and limita-
tions, all work through modulation of large neural networks (3).

In contrast, cranial nerve non-invasive neuromodulation (CN-
NINM) is a novel neuromodulation technique that precisely tar-
gets cranial nerves. Researchers (Dr. Yuri Danilov, Dr. Mitch Tyler,

Technologies, Newton, PA, USA) (4). This 3 x 3 x 0.1 cm (100 g)
device was designed to provide portable translingual neuro-
stimulation (TLNS), a form of CN-NINM, alongside physical
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rehabilitation to improve symptoms of chronic neurologic condi-
tions (5). Electrical signals are delivered to the dorsal aspect of the
tongue to augment neuroplastic changes that occur with physical
rehabilitation. Afferents in the lingual nerve (a branch of the tri-
geminal nerve carrying tactile sensation) and chorda tympani
nerve (a branch of the facial nerve carrying taste and pain) trans-
mit these signals to their respective brainstem nuclei in the dorsal
pons. It is hypothesized that subsequent collateral interactions are
made with the adjacent vestibular nuclei where many neural cir-
cuits involving movement, balance, gait, breathing, and aware-
ness intersect (4). Consequently, clinical outcomes may be
improved while retraining these pathways through physical reha-
bilitation (4). The tongue is used as the stimulatory target because
of its high nerve fiber density (the lingual nerve has
10,000-33,000 fibers and each chorda tympani nerve has
3000-5000 fibers) and the controlled environment in the
mouth (6).

Past reviews have been published on TLNS; however, none
have focused on appraising the current body of evidence and
assessing its applications to several neurological conditions (4).
Rather, superficial approaches to summarizing evidence were
employed and substantially more research is now available
(4,7-11). Thus, the purpose of this review is to summarize and
appraise the clinical evidence currently available for TLNS and
assess its potential clinical applications.

MATERIALS AND METHODS

We did not deem a formal systematic review to be appropriate
due to the iterative nature of our research objective, lack of con-
sensus for quantitative outcomes for TLNS, and anticipated het-
erogeneity of study designs. Therefore, we did not formally
perform data synthesis. To obtain a comprehensive, up-to-date,
and unbiased survey of literature, multiple databases were
searched for all primary research in the English language up to
April 30, 2020, investigating the effects of TLNS technology on
any neurological condition. Ovid MEDLINE, Ovid EMBASE, Web of
Science, and Google Scholar were searched. The following Bool-
ean strategy was used to search each database: ((((“Translingual”
AND (“Neuro*” OR “Stimulation”))) OR (“Portable” AND
“Neuromodulation” AND “Stimulator”)) OR (“PoNS” AND “Helius"))
OR (“Cranial Nerve” AND “Neuromodulation”). Given the current
investigational status of the intervention, conference abstracts,
case reports, and case series were included. Animal studies, com-
mentaries, editorials, or review articles were excluded. Addition-
ally, reference and citation lists of all relevant studies were
manually searched. Figure 1 illustrates the selection of studies
depicted in a Preferred Reporting Items for Systematic Reviews
and Meta-Analyses diagram (Fig. 1). Two authors (D.D. and A.L)
independently screened abstracts and full texts, extracted all data,
and critically appraised studies using the Cochrane Risk of Bias 2.0
tool for RCTs and the Cochrane Risk of Bias In Non-Randomized
Studies of Interventions tool for nonrandomized studies (12,13).
The remaining author resolved all disagreements (G.K.).

RESULTS

Five randomized-controlled trials (RCTs), three quasi-experimen-
tal trials, and seven case reports/series were found (Table 1). For
overall risk of bias, two RCTs had “high-risks of bias,” and three

RCTs had “some concerns of bias” (Table 2). All three quasi-
experimental trials had “serious risks of bias” (Table 3).

Traumatic Brain Injury

Traumatic brain injury (TBI) is a common and debilitating injury.
The Centers for Disease Control and Prevention estimates that
over five-million people in the United States (US) live with a dis-
ability from TBI (14). Despite post-acute rehabilitation, 125,000
new patients per year require assistance with their activities of
daily living following their injury (15). The disease burden of TBI in
the United States was estimated to be over $221 billion annually
in 2009 (16). The long-term sequelae of TBI coupled with the stark
economic consequences warrants research into novel therapies
such as TLNS.

The earliest study into TLNS on TBI patients was a case series of
four patients with chronic balance and gait secondary to moder-
ate TBI (mean time-since-onset: 5.4 years) (17). Subjects received
TLNS stimulation along with flexibility and conditioning exercises
with a therapist, twice daily, five days/week for two weeks. Com-
pared to baseline, all subjects had clinically significant improve-
ments in their gait (mean improvement in the Dynamic Gait
Index [DGI]: +14.8) and balance (mean improvement in the Sen-
sory Organization Test [SOT]: +35.3). Data from select TBI subjects
also showed improvements in cognition, eye movement, and syn-
chronization of muscular activity in the left soleus and vastus
lateralis (17).

Subsequently, two double-blind RCTs were conducted: TBI-001
and the long-term treatment trial (8,18). TBI-001 was a multicenter
RCT (n = 122) conducted in the United States by Helius Medical
(8). Patients were included if they had mild-to-moderate TBI
(mmTBI) lasting at least one-year and if their age-adjusted SOT
scores were <16 points below normal. Patients were randomized
to either five-weeks of high-frequency pulse (HFP) or low-
frequency pulse (LFP) stimulation in addition to high-volume
physical rehabilitation. The pulse frequency was 150 Hz and
0.08 Hz (1875:1 ratio) for HFP and LFP, respectively. Additional
waveform parameters of HFP and LFP are illustrated in Figure 2
(19). Both groups observed statistically significant within-group
improvements in Dynamic Gait Index (DGI) scores (p < 0.0001).
Reductions in falls and improvements in the 6-minute walk test
(6MWT) were observed in both groups, although no statistical
testing was conducted. Seventy-one percent of the HFP and 64%
of the LFP group had a clinically significant improvement in bal-
ance (defined as =15-point increase on SOT), but this between-
group difference did not reach statistical significance (p = 0.37).
Twenty-two device-related adverse effects (AEs) were reported, all
of which were self-limiting. The most common AEs were vomiting
(n =5), nausea (n = 5), and fainting (n = 2) (8). All AEs were
reported cumulatively without distinction between groups.

The long-term treatment trial, a single-centered RCT (n = 43),
was conducted to investigate extended treatment periods and
outcomes following treatment discontinuation (18). The trial
involved the same eligibility criteria and pulse frequencies as TBI-
001 but participants received an extended treatment period of
14 weeks of either HFP or LFP stimulation with adjunct high-
volume physical rehabilitation. Participants then returned to nor-
mal activity and were followed for an additional 12 weeks to
investigate treatment durability. Both groups demonstrated a >30
point increase in mean SOT scores (minimum clinically significant
difference [MCSD] = 8.5 points) and a three point increase in DGI
scores (MCSD = 3) (20,21) Furthermore, both groups had
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram. [Color figure can be viewed at wileyonlinelibrary.com]

statistically significant improvements from baseline SOT and DGI
scores at all trial timepoints (weeks 2, 5, 14, and 24). However, no
statistically significant between-group differences were observed.
Improvements in SOT and DGl scores were retained at 12 weeks
after treatment discontinuation. Fifty-four and 37 total AEs during
the treatment period were reported in the HFP and LFP groups,
respectively. Of which, eight mild-to-moderate treatment-related
AEs were reported among both groups. Only vertigo, pain, and
headache were listed as examples of treatment-related AEs. It was
not specified if such AEs were self-limited and in which group
they occurred in (18).

Studies demonstrated that TLNS together with high-volume
physical rehabilitation is a promising treatment modality for bal-
ance and gait symptoms secondary to chronic mmTBI. Statistically
and clinically significant within-group improvements in gait and
balance were achieved after only two weeks of treatment. Despite
the large commitment of time, energy, and resources for treat-
ment, the acceptable retention rates speak to the applicability of
TLNS. Treatment benefits were retained 12 weeks following dis-
continuation, which are suggestive of neuroplastic changes. How-
ever, both RCTs had biases and confounding introduced by trial
design that limits the validity of findings. Both RCTs had an over-
all “high-risk of bias." The first RCT had a “high-risk of bias” from
selective reporting as reported outcomes deviated from the origi-
nal protocol. The latter RCT had a “high-risk of bias” from missing
outcome data as 27% (n = 6) of the HFP group was lost to follow-
up compared none in the LFP group. Both RCTs had “some con-
cerns of bias” arising from the randomization process as no infor-
mation was provided on the allocation concealment process.

Furthermore, the efficacy of TLNS remains unclear given the lack
of between-group differences for any post-treatment outcome;
this raises the concern that LFP stimulation may be conferring a
therapeutic effect (22). Additionally, it was impossible to deter-
mine the degree to which TLNS or high-volume physical rehabili-
tation contributed to the observed improvements.

Multiple Sclerosis

Multiple sclerosis (MS) presents with varied symptoms but gait
disability is among the most prevalent. At the time of diagnosis,
half of patients report at least mild gait disability, but this pro-
gresses to 82% by ten-years mark (23). Given that the median sur-
vival after disease onset is 41 years, most MS patients develop
gait, balance, and mobility issues with time (24). MS research has
largely focused on immunomodulating medications, which poten-
tially modify the course of the disease (25). Neuromodulation,
such as DBS or functional electrical stimulation (FES), has shown
promise in treating MS-related motor deficits. But DBS is limited
by its invasive nature and FES is limited to specific gait abnormali-
ties (e.g., foot drop). TLNS represents a safe and noninvasive inter-
vention that, unlike FES, targets larger neural networks to achieve
results (4).

The earliest study to test the efficacy of TLNS in a MS popula-
tion was a double-blind RCT (n = 20) that included all subtypes of
MS. (26) Subjects were randomized into the intervention group,
which received TLNS using 50 psec pulses at 200 Hz, or the con-
trol group, which received a TLNS device calibrated to produce
pulses 1/1000th the intensity of the minimally perceivable level.
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DIEP ET AL.

Both groups received high-volume physical rehabilitation and
were treated for 14 weeks. The intervention group had statistically
and clinically significant improvements in DGI scores observed in
weeks 6, 10, and 14 compared to baseline (p < 0.05). This was not
observed in the control group. By weeks 10 and 14, the interven-
tion group had significantly higher DGI scores compared to the
control group (p < 0.05 and p < 0.005, respectively). The primary
AEs of TLNS use was transient head/jaw ache in 25% of subjects
(distribution between intervention and control group was not
described) and increased salivary production in all subjects. Both
resolved following improved education around proper device
usage.

The second study was a pilot RCT (n = 14) involving blinding of
just the research personnel (7). Electrostimulation intensities and
physical rehabilitation protocols were similar to the earlier afore-
mentioned study, but three domains were tested: balance, gait,
and cognition. With respect to balance, within-group SOT scores
were significantly higher postintervention in the intervention
group (p < 0.001) but not the control group (p = 0.06). TLNS was
significantly associated with SOT improvement (p = 0.015). With
respect to gait, both the intervention and the control group dem-
onstrated improvement in DGI scores, but between-group differ-
ences were not statistically significant. Both groups demonstrated
significant improvement in cognition using the COGMED system
(p < 0.0001). However, no statistically significant between-group
differences were observed. There was no mention of AEs in this
study.

Both the intervention and control group received functional
magnetic resonance imaging (fMRI), but neuronal activity was
only significantly increased in the dorsolateral prefrontal cortex
(DLPFC) and dorsal anterior cingulate cortex (dACC) post-TLNS in
the intervention group. No changes on fMRI were observed pre-
and post-TLNS in the control group. The DLPFC is associated with
working memory and processing verbal/spatial information while
the dACC is associated with decision-making (27,28). TLNS was
thought to have the greatest impact on augmenting balance and
gait through targets in the brainstem, but these fMRI results sug-
gest that TLNS confers neuroplastic changes in regions distant to
the brainstem to affect cognition.

Although both studies demonstrate feasibility, the efficacy of
TLNS remains inconclusive. The DGI was the only assessment used
across both studies but a between-group difference was only
observed by Tyler et al. (26) In terms of internal validity, both
RCTs had an overall risk of bias score of “some concerns.” Specifi-
cally, both RCTs had “some concerns of bias” from the randomiza-
tion process as no information was provided on the allocation
concealment process. Both RCTs also had “some concerns of bias”
from selective reporting as no protocols were available. Moreover,
it is important to note these two studies utilized variations in
pulse intensity to generate an intervention and control group,
which is an alternative to the variations in pulse frequency used
in the TBI studies. There is empiric evidence confirming the lack
of therapeutic effect of low frequency TLNS and, based on studies
of other neurostimulation modalities, it may be reasonable to
assume intensity adjustments can also generate a non-therapeutic
control group (22,29). Future research into treatment parameters
of TLNS should attempt to provide empiric evidence supporting
the lack of therapeutic benefit of sub-perceptible TLNS and exam-
ine treatment durability after intervention cessation. Finally, the
generalizability of both studies was limited by small sample sizes
despite their inclusion of all MS subtypes. The natural history of
MS varies between subtypes making low powered rehabilitation

Overall
Serious
Serious
Serious
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Selection of reported
study flow

results

All results reported

All results reported

No mention of patient

Serious

Low
Low

collection unlikely to

be affected by
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applied to both
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applied to both
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pre-intervention
assessment. But
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study, including lost
to follow-up, was not
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Low
Data unavailable for one
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Patient flow through
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Low
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Low
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received TLNS
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Intervention
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Low
Low
Low

balance disordered
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were applied
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Broad inclusion of all
No selection criteria

Low
Low
Low
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Control group was
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disordered patients
without TLNS

Serious

Control group was
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rather than balance
disordered patients
without TLNS

Serious
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intervention vs.
control arm
dependent on
patients’ rehab
program

0)

*Risk of bias assessments were completed for every outcome per study. However, no differences in risk of bias assessments were observed between outcomes.

Table 3. Risk of Bias Assessments of Non-randomized Controlled Trials Using the Risk of Bias in Non-randomized Studies — of Interventions Tool (ROBINS-I).

Abbreviation: TLNS, translingual neurostimulation.

Study*

Wildenberg et al. (41,42)
Wildenberg et al. (40)
Ignatova et al. (1
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Figure 2. |dealized stimulation waveforms: (a) “Normal” or “High-Frequency Pulse” waveform eliciting buzz sensation, and (b) “Placebo Low" or “Low-Frequency
Pulse” waveform which is perceivable to subjects as discrete pulses but which has much lower pulse rate. Ch, channel; IBP, Inner Burst Period; ICP, Inner-Channel
Period; OBP, Outer Burst Period; PA, Pulse Amplitude; PW, Pulse Width. Figure re-used in accordance with the Attribution Creative Commons BY License.

research challenging as some subtypes benefit substantially more
from rehabilitation than others (30). Larger studies will improve
generalizability and allow for subgroup analysis based on MS
subtype.

Stroke

Worldwide, stroke is the second leading cause of disability and
mortality (31). Motor deficits represent the most common disabil-
ity post-stroke, afflicting upward of 72-77% of stroke survivors
(32). Motor deficits affecting balance, posture, and gait are partic-
ularly devasting as they reduce the ambulation and cardiovascular
fitness of survivors, which in turn is associated with increased falls
risk, depression, and health-care expenditure (33). Conventional
physical rehabilitation post-stroke is the mainstay of treatment.
However, only 65% of stroke survivors see any improvements in
motor deficits with therapy (34). This leaves 35% of survivors see-
ing no improvement.

DBS and rTMS have been successful in treating post-stroke
tremor, dyskinesia, and dystonia (2,35). However, evidence for
these modalities to augment balance and gait rehabilitation
remains limited. The superficial placement of electrodes in rTMS
may limit how targeted the intervention can be. The surgical

placement of electrodes in DBS presents certain risks that limit
the patient population this intervention may be applicable
to. TLNS may represent a targeted and noninvasive intervention
that may augment balance and gait rehabilitation (4).

The earliest study of TLNS on stroke survivors was a case report
of an 80-year-old female four years poststroke (36). The subject
presented with deficits in balance, gait, cognition, eye move-
ments, and right arm function that all persisted despite conven-
tional physical rehabilitation. After 13 months of training with
TLNS, which consisted of twice-daily flexibility and conditioning
sessions occurring five times per week, the subject demonstrated
improvements in mobility and a decreased falls risk (36). The sub-
ject's gait improved 48% (16-23 on the DGI) and mobility
improved by 31% (timed-up-and-go reduced from 156 to
10.7 sec). Subsequently, a pilot RCT (n = 10) was conducted on
both ischemic and hemorrhagic stroke survivors, 7-30 days post-
stroke (9). Patients were randomized to two-weeks of TLNS-
augmented balance and gait rehabilitation or rehabilitation alone.
Significant between-group differences were observed for Balance
Evaluation Systems Test (BEST) scores (p = 0.032); this was the first
demonstration of TLNS efficacy on stroke survivors. However, no
significant between-group differences were observed for posture,
walking, or mobility. All participants using TLNS completed the

www.neuromodulationjournal.com
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intervention without issue, except two participants experienced
isolated AEs including one episode of dizziness and one episode
of temple pain; both self-resolved before the end of the testing
period.

Current evidence suggests the feasibility of TLNS within a sub-
acute stroke population with clinically meaningful and statistically
significant improvement in balance (9). Despite demonstrating
between-group differences for BEST scores, this estimate of effi-
cacy is limited by "some concerns of bias" from a retrospective
protocol registration, a small sample size, and the lack of a sham
TLNS intervention. Additionally, several aspects limit the external
validity of the results. First, incomplete data precluded meaningful
statistical analysis of between-group differences for cognition and
depression outcomes. Second, the Canadian Occupational Perfor-
mance Measures was a planned secondary outcome, but this pilot
failed to report results. Lastly, this study treated and followed sub-
jects for only two weeks. The effects of TLNS remain unstudied
using the conventional 14-week treatment period and the long-
term retention of these benefits remains unclear.

Balance Disorders

Chronic balance disorder is a group of disorders with varying
etiology but in all cases, the risk of falls is significantly increased
leading to physical disability, impacts on mental health, and
increased caregiver and healthcare systems reliance (37). Ele-
ctrostimulation of the tongue is not a novel concept for treating
balance disorders. In vestibular substitution studies, head position
data are conveyed through the tongue to replace the information
lost due to vestibular dysfunction (38). However, Danilov et al.
found that the improvements in balance persisted even after dis-
continuation of vestibular substitution (39). This suggested that
the stimuli, independent of biofeedback, was capable of inducing
neuroplastic changes; this was later supported by fMRI studies
(40-42). Therefore, TLNS differs in that no exogenous stimuli are
provided. The mechanism is not to replace loss vestibular infor-
mation but rather to amplify neuroplastic changes that occur with
rehabilitation in the brainstem and cerebellum.

Two quasi-experimental trials (n = 12, n = 9) applied TLNS to
patients with a broad range of chronic balance disorders (central/
peripheral vestibular disorder, migraine-related disorder, traumatic
brain injury, Meniere’s disease, spinocerebellar/cerebellar ataxia,
gentamycin ototoxicity, and cerebellar infarction) and compared
them to healthy controls (40-42). Both studies used similar meth-
odology in which a cohort of patients with balance disorders and
a cohort of healthy controls were both exposed to balance-
invoking visual stimulation, fMRI, and tests of balance, gait, and
disability. However, only patients with balance disorders received
10 days of TLNS alongside simple balance exercises, after which
the same visual stimuli, fMRI, and testing were conducted again.
Significant improvements in gait (measured using the DGI;
p < 0.005), balance (measured using the SOT; p = 0.026), posture
(measured using accelerometers; p < 0.005), and in self-perceived
disability (measured using the Dizziness Handicap Inventory;
p < 0.0005) were observed pre- and post-intervention. In fact,
postintervention posture scores in the balance disorder group
were not significantly different than the scores of healthy con-
trols. There was no mention of AEs in either study.

fMRI data suggest that TLNS-augmented balance training led to
a significant increase in trigeminal nuclei activity when patients
received balance-invoking stimuli (42). The trigeminal nuclei does
not process balance information, but rather the effects of

neuromodulation are transmitted through the nuclei to adjacent
structures including the vestibular nuclei to affect change (43).
Subsequent fMRI studies report that neuroplastic change did not
exclusively occur in the brainstem’s trigeminal nuclei but also in
distant cortical and subcortical structures (41). Subcortical struc-
tures, such as the globus pallidus and thalamus, served to process
and transmit this information to cortical structures. TLNS-
augmented balance training resulted in alterations to nonspatially
related cortical structures consisting of the visual processing cen-
ters (visual association cortex) and vestibular processing centers
(multisensory corticovestibular system and vestibular nuclei);
these functionally related cortical structures form a functional net-
work. According to the reciprocal inhibitory visual-vestibular inter-
action theory, motion information derived from the visual system
will inhibit incoming information from the vestibular system, and
vice versa, to protect the brain from incongruent stimuli (44). It
appears that this network displays excessive activity in balance
disorder and treatment with TLNS normalizes this network by
dampening reciprocal inhibition (41). Interestingly, the multisen-
sory corticovestibular system is located in the superior temporal
sulci, which is distant from the trigeminal nuclei where TLNS is
known to affect the most change. TLNS-augmented training has
been shown to improve balance and gait, through targets in the
brainstem and pons, but it is also observed to improve cognition
and emotion (4,7). Network activation observed in both studies
confirms the mechanism identified in previous studies through
which TLNS can impart neuroplastic changes to areas not spatially
related to the trigeminal nuclei (45).

Both studies demonstrated clinical and self-perceived improve-
ments in balance and gait in balance disorder participants
(40-42). Additionally, both studies used fMRI with independent
component analysis to determine the structures and networks
that were augmented with TLNS. Both studies had serious con-
cerns for risk of bias (40-42). The clinical testing (i.e., balance, gait,
and posture) of both studies used a within-subject design, which
increased risk of bias. However, the fMRI component of both stud-
ies compared imaging findings of balance-disordered patients
who completed TLNS and rehabilitation with healthy controls
who completed neither. The lack of matched balance-disordered
controls, in addition to not accounting for the role of rehabilita-
tion alone, leads to a serious concern for confounding. Future
studies should use balance-disordered controls and account for
the role of rehabilitation alone in fMRI findings. Nevertheless,
functional imaging is a powerful tool that can be leveraged to val-
idate this network modulation pattern hypothesis in other patient
populations and to discover new networks.

Other Neurological Conditions

TLNS has been investigated in other neurological conditions
but the evidence is limited to a quasi-experimental trial and five
case reports/series, each describing a different condition. Many of
these investigations are presented in conference proceedings and
details regarding methodology are unreported. First, a quasi-
experimental trial (n = 134) investigated a ten days course of
TLNS-augmented rehabilitation versus rehabilitation alone in chil-
dren with spastic diplegia (mean age: 8, standard deviation: 0.3)
(10). Statistically significant within-group improvements in both
hand and leg spasticity (measured using the Ashworth scale) were
observed in both groups but the improvements in leg spasticity
of the TLNS-augmented group was significantly greater
(p < 0.001). Similarly, statistically significant  within-group
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improvements in mobility (measured using the functional motor
scale) were observed but no between-group differences were
found. However, there were serious concerns for risk of bias in
this study as a result of patient allocation and outcome reporting.
Patients were allocated to the TLNS group and the rehabilitation
alone group based on their prescribed rehabilitation plans;
patients were prescribed plans based on the severity of their con-
dition. Second, the baseline clinical demographic characteristics
of patients and patient flow was unreported in this study. Thus,
these findings of within-group improvements should be inter-
preted with caution.

In the first case series, 70 patients with ataxia following re-
section of large and giant vestibular schwannomas received an
intensive ten session TLNS intervention (11). The authors reported
improvements in walking and standing but details regarding
methodology and results were unreported in this conference pro-
ceeding. In a separate case report, two participants with motor
spinal cord injuries that were refractory to conventional rehabilita-
tion demonstrated improvements in balance and gait. Improve-
ments were sustained throughout 14 weeks of TLNS-augmented
rehabilitation (46). Both participants, who at baseline were reliant
on power wheelchairs, were able to complete the majority (83%
and 100%) of the intervention, demonstrating feasibility. In a third
case report, a participant with six years of advanced Parkinson’s
demonstrated improvements in balance, gait, and oculomotor
function after four months of TLNS-augmented rehabilitation (47).
The fourth case featured a participant with deficits in posture and
gait after undergoing a fourth ventricle ependymoma re-
section three months prior (48). Following two-weeks of TLNS-
augmented rehabilitation, the participant demonstrated improve-
ments in postural stability, gait, and a near perfect score on the
BEST (20/28 pre-test vs. 27/28 post-test). The final case is of a par-
ticipant with a 20-year history of progressive spinocerebellar
ataxia of unreported etiology who demonstrated improvements
in balance and gait after two weeks of TLNS-augmented rehabili-
tation (49). Most gains in gait were from increased range of
motion in the arms/trunk and increased left-to-right symmetry of
stride length and velocity.

Across all cases, subjects could complete most of the interven-
tion, including a 12-week home component in the spinal cord
injury report. No AEs were reported except for excess salivary pro-
duction. Although RCT evidence is absent among these
populations, many of the participants recruited into these case
studies have completed years of physical rehabilitation prior to
enrolment without significant gains. These studies, by no means,
demonstrate conclusive evidence of TLNS efficacy. Rather, they
suggest that TLNS can be feasibly and safely tested in a diverse
population, often with refractory neurological conditions, to fill
the high demand for effective treatment in this patient
population.

CONCLUSIONS AND FUTURE DIRECTIONS

Overall, TLNS research demonstrated a promising therapeutic
device that can be feasibly and safely tested on diverse neurologi-
cal conditions. In 2019, Canada was the first country to approve
TLNS to treat chronic balance deficits secondary to mmTBI (50). In
2020, Canada approved its use in MS patients with gait deficits
(50). However, approval was largely based on product safety
rather than efficacy. Clinicians must cautiously counsel patients
about TLNS as patients with chronic illnesses often consider

treatment modalities that advertise symptom relief, despite large
financial costs and the absence of strong evidence (51).

TLNS has been studied to varying degrees to treat symptoms
secondary to stroke, balance disorders, and other neurodegenera-
tive disorders. Thus far, research has been limited small case stud-
ies and series, which has demonstrated feasibility and safety in
diverse patient populations. The next step must be to produce
high-quality RCTs to further elucidate efficacy, optimal dosages,
necessary treatment duration, and treatment durability. It is also
important to acknowledge the difficulties in finding an appropri-
ate control group when testing TLNS; this is a common issue
when investigating nonpharmacologic interventions. For instance,
comparisons between any device to physical rehabilitation alone
fail to control for placebo effects, while comparisons between any
device to a sham device may underestimate the true effect if the
sham is active. Further amendments to the TLNS control condi-
tions are necessary to achieve optimal comparisons of efficacy.
Otherwise, treatment benefits may be attributed to other factors
including placebo effect, increased volume and intensity of physi-
cal rehabilitation, or synergistic combinations of the above.

Considering the vital role of physical rehabilitation, it is impera-
tive that protocols are transparently reported. Protocols vary
greatly among published studies and are often not transparently
reported. Studies should also specify the exact parameters of the
pulse-width, frequency, and intensity to improve reproducibility.
Adequate reporting of interventions will ensure reproducibility of
future trials and allow for a better understanding of TLNS.
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and researchers so | expect it will be cited going forward.
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This interesting access to central neural processing for treatment

of gait and balance is certainly worthwhile for further investigation.
The authors have presented a very helpful introduction to this spe-
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TRANSLINGUAL NEUROSTIMULATION REVIEW

attempts to access the central nervous system for therapeutic
neuromodulation (ie., vagus, sphenopalatine, and auditory routes) it
points out the possibilities for many further applications to treat dis-
ease processes less invasively and with specific targets. This review
inspires creativity for similar efforts in other disease states.

It will be important in the future to discern the differences in sub-per-
ception and sensory-based therapies for translingual stimulation. The
remarkably rich sensory neuron density of the tongue may demonstrate
responsiveness to higher frequencies and variable waveforms (e.g, sinu-
soidal, burst-forms, kHz frequencies, etc) to determine other specific cen-
tral targets which might be suitable for peripheral modulation.

This is an exciting area for further research and the authors have
done a fine job of introducing the neuromodulation community to
this approach.

Thomas Yearwood, MD
Daphne, AL USA

The authors provide a detailed summary of available research
results for the use of TLNS as a non-invasive form of
neuromodulation and its potential benefits as an adjunct to rehabili-
tation. Importantly, they recognize the difficulty in creating adequate
control group methodologies in studies of non-pharmacological
therapies.

George Kukurin, DC, PhD, MS-HPEd
Cape Canaveral, FL USA
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